更多>>精华博文推荐
更多>>人气最旺专家

何洋

领域:中原网

介绍:房地产公司员工年终总结个人总结,就是把一个时间段的个人情况进行一次全面系统的总检查、总评价、总分析、总研究,分析成绩、不足、经验等。...

常浩

领域:网易新闻

介绍:基本格式1、标题2、正文开头:概述情况,总体评价;提纲挈领,总括全文。利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅

利来电游官方网站
本站新公告利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅
e3z | 2019-01-19 | 阅读(227) | 评论(918)
用户服务条款尊敬的用户:您好!欢迎光临文档投稿赚钱网站。【阅读全文】
利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅
bn3 | 2019-01-19 | 阅读(323) | 评论(279)
这标明①最高行政机关必须向全国人大负责②国家机关必须贯彻依法治国原则③全国人大具有执法和检查职能④人大常委会是人大最高权力机关A.①②B.①③C.②④D.③④人大代表的权利提案权:经调研就某问题写成草案向人大提出的权利审议权:审查、讨论,发表意见表决权:表示赞成或反对或弃权的决定权利质询权:对政府工作提出问题并要求答复权利在G市2006年召开的人民代表大会上,人大代表就G市该年的财政预算案提出了许多批评意见,财政局长几次到会就预算中的一些问题回答代表的提问。【阅读全文】
wiz | 2019-01-19 | 阅读(369) | 评论(855)
光电特征标识技术是一种新型利用光电特征对目标进行识别、定位的现代识别技术。【阅读全文】
rn2 | 2019-01-19 | 阅读(565) | 评论(628)
“这周边学校多,而且都是不错的学校。【阅读全文】
szg | 2019-01-19 | 阅读(416) | 评论(373)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
ulm | 2019-01-18 | 阅读(600) | 评论(852)
始居柴桑,继迁上京,复迁南村。【阅读全文】
2rn | 2019-01-18 | 阅读(392) | 评论(464)
 微积分基本定理学习目标重点难点1.会用定积分求曲边梯形的面积.2.直观了解微积分基本定理的含义.重点:微积分基本定理及利用定理求定积分.难点:利用定积分求较复杂的图形的面积.微积分基本定理对于被积函数f(x),如果F′(x)=f(x),则eq\i\in(a,b,)f(x)dx=__________,亦即____________=F(b)-F(a).预习交流1做一做:eq\i\in(0,1,)x2dx=________.预习交流2做一做:eq\i\in(0,π,)(cosx+1)dx=________.预习交流3议一议:结合下列各图形,判断相应定积分的值的符号:(1)eq\i\in(a,b,)f(x)dx____0(2)eq\i\in(a,b,)g(x)dx____0(3)eq\i\in(a,b,)h(x)dx____0在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引F(b)-F(a) eq\i\in(a,b,)F′(x)dx预习交流1:提示:eq\f(1,3)预习交流2:提示:∵(sinx+x)′=cosx+1,∴eq\i\in(0,π,)(cosx+1)dx=eq\i\in(0,π,)(sinx+x)′dx=sinπ+π-(sin0+0)=π.预习交流3:提示:(1)> (2)< (3)>一、简单定积分的求解计算下列各定积分:(1)eq\i\in(0,2,)xdx;(2)(1-t3)dt;(3)eq\i\in(1,2,)eq\f(1,x)dx;(4)(cosx+ex)dx;(5)eq\i\in(2,4,)t2dx;(6)eq\i\in(1,3,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x2)))dx.思路分析:根据导数与积分的关系,求定积分要先找到一个导数等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函数可结合导数公式表.1.若eq\i\in(0,1,)(2x+k)dx=2,则k=________.2.定积分sin(-x)dx=________.3.求下列定积分的值:(1)eq\i\in(1,2,)eq\r(x)dx;(2)eq\i\in(2,3,)eq\f(1-x,x2).微积分基本定理是求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意y=eq\f(1,x)的原函数是y=.求定积分时要注意积分变量,有时被积函数中含有参数,但它不一定是积分变量.3.定积分的值可以是任意实数.二、分段函数与复合函数定积分的求解计算下列定积分:(1)eq\i\in(2,5,)|x-3|dx;(2)sin2xdx;(3)e2xdx思路分析:被积函数带绝对值号时,应写成分段函数形式,利用定积分性质求解.当被积函数次数较高时,可先进行适当变形、化简,再求解.1.设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,0≤x1,,2-x,1x≤2,))则eq\i\in(0,2,)f(x)dx=__________.2.(1)设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x≤0,,cosx-1,x0,))求f(x)dx;(2)求eq\r(x2)dx(a>0).1.分段函数在区间[a,b]上的积分可化成几段积分之和的形式,分段时按原函数的各区间划分即可.2.当被积函数的原函数是一个复合函数时,要特别注意原函数的求解,与复合函数的求导区分开来.例如:对于被积函数y=sin3x,其原函数应为y=-eq\f(1,3)cos3x,而其导数应为y′=3cos3x.三、由一条曲线和直线所围成平面图形的面积的求解已知抛物线y=4-x2.(1)求该抛物线与x轴所围成图形的面积;(2)求该抛物线与直线x=0,x=3,y=0所围成图形的面积.思路分析:画出图形,结合图形分析定积分的积分区间,同时注意面积与积分的关系.1.抛物线y=x2-x与x轴围成的图形面积为__________.2.曲线y=cosxeq\b\lc\(\rc\)(\a\vs4\al\co1(0≤x≤\f(3π,2)))与坐标轴所围成的面积为________.3.(2012山东高考)设a>0.若曲线y=eq\r(x)与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.利用定积分求曲线所围成的平面图形的面积的步骤:(1)根据题意画出图形;(2)找出范围,定出积分上、下限【阅读全文】
1ln | 2019-01-18 | 阅读(731) | 评论(856)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅,利来国际AGq旗舰厅
i1i | 2019-01-18 | 阅读(439) | 评论(267)
材料一反映中国古代科技是服务农业、手工业的经验总结,讲究天人合一,这说明中国古代科技缺乏理性精神。【阅读全文】
qr2 | 2019-01-17 | 阅读(125) | 评论(841)
在监制洪涛看来,困难远不止录制空间庞大,来自艺人的、的、时间的压力每一个都可能成为压垮我们的稻草。【阅读全文】
bnt | 2019-01-17 | 阅读(346) | 评论(908)
建设社会主义文化强国的必由之路推动社会主义文化繁荣兴盛中华文化复兴的必然选择中国先进文化的求索中国特色社会主义文化内涵是什么为什么要求走中国特色社会主义文化发展道路1、中华文化经历了古代的辉煌,伴随着近代民族危机,文化也走向衰微,探索道路上充满荆棘也充满希望。【阅读全文】
ug0 | 2019-01-17 | 阅读(333) | 评论(956)
环环(ID:huanqiu-com)了解到,部分福岛居民自备核辐射检测器,只有确信安全才敢购买。【阅读全文】
cea | 2019-01-17 | 阅读(893) | 评论(648)
*结论:预期结果与实验结果完全符合,假说成立——基因在染色体上!3、验证——测交126132120115实验结果红眼白眼XAXa×XaYP♀♂XAXa红眼XaXa白眼XAY红眼XaY白眼预期结果♂♀♀♂配子XAXaYXaF1*果蝇的4对染色体上却有数百个基因基因在染色体上呈线性排列一条染色体上有许多个基因摩尔根又进一步研究:关于基因与染色体、DNA关系的归纳!*在杂合体的细胞中,位于一对同源染色体上的等位基因,具有一定的;在减数分裂形成配子的过程中,______会随__________的分开而分离,分别进入两个配子中,独立的随配子遗传给后代。【阅读全文】
wyo | 2019-01-16 | 阅读(195) | 评论(130)
书评和序跋当然要靠船下篙,但有些地方也要超越具体对象,涉及一般或高远之处,这才不会死于题下,而有飘逸灵动之致。【阅读全文】
9jf | 2019-01-16 | 阅读(186) | 评论(302)
此外,用户账户不得以任何方式转让,否则阿里巴巴有权追究用户的责任,对用户账户采取关闭等管理措施,且由此产生的一切责任均由用户承担。【阅读全文】
共5页

友情链接,当前时间:2019-01-19

利来国际官网 w66利来guoji 利来娱乐帐户 利来国际最给力的老牌 利来娱乐w66
利来国际在钱服务 老牌利来 利来国际w66手机网页 利来国际老牌 利来国际ag国际厅
利来娱乐在线平台 w66利来娱乐 利来娱乐网 w66com 利来老牌
利来国际手机客户端 利来国际是多少 w66利来国际 利来天用户 利来国际最给利的老牌
泾阳县| 逊克县| 大同县| 吴忠市| 元谋县| 安阳县| 浮山县| 兰溪市| 丘北县| 沛县| 宜川县| 清水河县| 赣州市| 常德市| 长乐市| 泊头市| 两当县| 扎鲁特旗| 兖州市| 商洛市| 黑水县| 鸡西市| 阿克陶县| 西乌珠穆沁旗| 堆龙德庆县| 花莲市| 南安市| 游戏| 余干县| 屏山县| 资溪县| 通海县| 酉阳| 咸阳市| 东光县| 赞皇县| 包头市| 普格县| 天津市| 临高县| 石首市| http://m.21762513.cn http://m.02884592.cn http://m.74079491.cn http://m.93599426.cn http://m.82486670.cn http://m.62923759.cn